SIMPSON Strong-Tie

Strong-Bolt® 2 Design Information — Concrete

Carbon Steel Strong-Bolt® 2 Installation Information¹

Characteristic	Cumbel	Unito				No	minal An	chor Dian	neter, d _a	(in.)				
Characteristic	Symbol	Units	1/44	3/	6 ⁵		1/25		5,	⁄8 ⁵	3,	4 ⁵	1 ⁵	
				Instal	lation Inf	ormation								
Nominal Diameter	da	in.	1/4	3,	⁄8		1/2		5	/8	3	/4		1
Drill Bit Diameter	d	in.	1/4	3,	/ 8		1/2		5/8		3	/4	1	
Baseplate Clearance Hole Diameter ²	$d_{\mathcal{C}}$	in.	5/16	7/	16		9/16		11	/16	7,	/8	1 1/8	
Installation Torque	T _{inst}	ft-lbf	4	3	0		60		9	00	1	50	2	30
Nominal Embedment Depth	h _{nom}	in.	13⁄4	17/8	27/8	2	3/4	37/8	3%	51/8	41/8	5¾	51/4	93/4
Effective Embedment Depth	h _{ef}	in.	1½	1 ½	2½	2	1/4	3%	23/4	41/2	3%	5	41/2	9
Minimum Hole Depth	h _{hole}	in.	17/8	2	3	;	3	41/8	35%	5%	43/8	6	51/2	10
Minimum Overall Anchor Length	l _{anch}	in.	21/4	23/4	3½	3	3/4	5½	41/2	6	5½	7	7	13
Critical Edge Distance	Cac	in.	2½	61/2	6	61/2	61/2	71/2	71/2	9	9	8	18	13½
	C _{min}	in.	13⁄4		3	7	4	4	6	1/2	6	1/2		8
Minimum Edge Distance	for s ≥	in.	_	-	-	_	_	_	-	_		3	-	_
Minimum On a dia a	Smin	in.	21/4	(3	7	4	4		5		7		8
Minimum Spacing	for c ≥	in.	_	_	_	_	_	_	-	_			-	_
Minimum Concrete Thickness	h _{min}	in	31/4	31/4	41/2	41/2	5½	6	51/2	77/8	6¾	83/4	9	13½
				A	dditional	Data								
Yield Strength	f _{ya}	psi	56,000	92,	000			85,000			70,	000	60,	,000
Tensile Strength	f _{uta}	psi	70,000				115,000)			110	,000	78,	,000
Minimum Tensile and Shear Stress Area	A _{se}	in.²	0.0318	0.0	514		0.105		0.166		0.270		0.472	
Axial Stiffness in Service Load Range — Cracked and Uncracked Concrete	β	lb./in.	73,700³	34,	820		63,570	91,370 118,840		91,370		,840	299	,600

- 1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318 Appendix D.
- $\hbox{2. The clearance must comply with applicable code requirements for the connected element.}\\$
- 3. The tabulated value of β for 1/4-inch diameter carbon steel Strong-Bolt 2 anchor is for installations in uncracked concrete only.
- 4. The ¼-inch-diameter (6.4mm) anchor may be installed in top of uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in this table.
- 5. The %-inch-through 1-inch-diameter (9.5mm through 25.4mm) anchors may be installed in top of cracked and uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in this table.

Mechanical Anchors

Stainless-Steel Strong-Bolt® 2 Installation Information¹

Characteristic	Cumbal	Units			No	minal And	chor Dian	neter, d _a	(in.)					
Characteristic	Symbol	Units	1/44	3/	6 ⁵		1/25		5/6	3 ⁵	3,	⁄4 ⁵		
			Installation Inf	formation										
Nominal Diameter	da	in.	1/4	3,	/8		1/2		5,	8	3,	3/4		
Drill Bit Diameter	d	in.	1/4	3,	/8		1/2	1/2 5/8		8	3	3/4		
Baseplate Clearance Hole Diameter ²	d_c	in.	5/16	7/	í16		9/16		11/	11/16		11/16 7		⁷ /8
Installation Torque	T _{inst}	ft-lbf	4	3	0		60	0 80		1:	50			
Nominal Embedment Depth	h _{nom}	in.	13/4	1 1/8	27/8	2¾	3	7/8	3%	51/8	41/8	53/		
Effective Embedment Depth	h _{ef}	in.	1 ½	1 ½	2½	21/4	3	3/8	23/4	41/2	3%	5		
Minimum Hole Depth	h _{hole}	in.	17/8	2	3	3	4	1/8	35/8	5%	43/8	6		
Minimum Overall Anchor Length	ℓ_{anch}	in.	21/4	23/4	3½	3¾	5	1/2	41/2	6	5½	7		
Critical Edge Distance	Cac	in.	21/2	61/2	81/2	41/2	-	7	71/2	9	8	8		
Minimum Edga Diatanaa	C _{min}	in.	13/4	(3	61/2	5	4	2	ļ	6			
Minimum Edge Distance	for $s \ge$	in.	_	1	0	_	_	8	8	3	_			
Minimum Canalan	S _{min}	in.	21/4	3	3	8	5½	4	61/4		6	1/2		
Minimum Spacing	for c ≥	in.	_	1	0		_	8	5	/2	_	_		
Minimum Concrete Thickness	h _{min}	in.	31/4	31/4	41/2	41/2	(3	5½	77/8	6¾	83		
			Additional	Data										
Yield Strength	f _{ya}	psi	96,000	80,	000		92,000		82,0	000	68,	000		
Tensile Strength	f _{uta}	psi	120,000	100	,000		115,000		108,	000	95,	000		
Minimum Tensile and Shear Stress Area	A _{se}	in.²	0.0255	0.0	514		0.105		0.1	66	0.2	270		
Axial Stiffness in Service Load Range — Cracked and Uncracked Concrete	β	lb./in.	54,430 ³	29,	29,150 54,900 61,270		270	154	,290					

- 1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318 Appendix D.
- 2. The clearance must comply with applicable code requirements for the connected element.
- 3. The tabulated value of β for 1/4-inch diameter stainless steel Strong-Bolt 2 anchor is for installtions in uncracked concrete only.
- 4. The ¼-inch-diameter (6.4mm) anchor may be installed in top of uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in this table.
- 5. The %-inch-through %-inch-diameter (9.5mm through 19.1mm) anchors may be installed in top of cracked and uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in this table.

0.55

Strong-Bolt® 2 Design Information — Concrete

C

Carbon Steel Strong-Bolt® 2 7	Tension :	Streng	gth Design Da	ata¹							IBC		LW
Observatoristis	Oh.al	11-24-				Nomina	l Anchor I	Diameter	; d _a (in.)				
Characteristic	Symbol	Units	1/48	3,	/8 ⁹	1/	⁄2 ⁹	5,	/8 ⁹	3/2	, ⁹	1	9
Anchor Category	1, 2 or 3	_				1							2
Nominal Embedment Depth	h _{nom}	in.	13/4	1%	21/8	23/4	37/8	3%	51/8	41/8	5¾	51/4	9¾
		S	teel Strength in Te	ension (A	CI 318 Se	ection D.5	5.1)						
Steel Strength in Tension	N _{sa}	lb.	2,225	5,6	600	12,	100	19	070	29,	700	36,	815
Strength Reduction Factor — Steel Failure ²	ϕ_{sa}	_				0.7	75					0.	65
	(Concrete	Breakout Strengt	th in Tens	ion (ACI 3	318 Secti	on D.5.2)	10					
Effective Embedment Depth	h _{ef}	in.	1½	1½	2½	21/4	3%	2¾	41/2	3%	5	41/2	9
Critical Edge Distance	C _{ac}	in.	2½	6½	6	6½	7½	7½	9	9	8	18	13½
Effectiveness Factor — Uncracked Concrete	K _{uncr}	_					24	4					
Effectiveness Factor — Cracked Concrete	k _{cr}	_	_7					1	7				
Modification Factor	$\psi_{c,N}$	_	_7					1.	00				
Strength Reduction Factor — Concrete Breakout Failure ³	$\phi_{\it cb}$	_				0.6	35					0.	55
		Pul	lout Strength in To	ension (A	CI 318 Se	ection D.5	5.3)10						
Pullout Strength, Cracked Concrete $({\rm f'}_c{=}2,500~{\rm psi})$	N _{p,cr}	lb.	7	1,3005	2,7755	N/A ⁴	3,7355	N/A ⁴	6,9855	N/A ⁴	8,5005	7,7005	11,185
Pullout Strength, Uncracked Concrete $(f^t_c=2,500~psi)$	N _{p,uncr}	lb.	N/A ⁴	N/A ⁴	3,3405	3,6155	5,2555	N/A ⁴	9,0255	7,1155	8,8705	8,3605	9,6905
Strength Reduction Factor — Pullout Failure ⁶	$\phi_{ ho}$	_				0.6	35					0.	55
	Te	nsile Str	ength for Seismic	Applicat	ions (ACI	318 Sect	tion D.3.3	.)10					
Tension Strength of Single Anchor for Seismic Loads (f' $_{c}$ =2,500 psi)	N _{p.eq}	lb.	7	1,3005	2,7755	N/A ⁴	3,7355	N/A ⁴	6,9855	N/A ⁴	8,5005	7,7005	11,185

- The information presented in this table must be used in conjunction with the design criteria of ACI 318 Appendix D, except as modified below.
- The tabulated value of ϕ_{sa} applies when the load combinations of Section 1605.2.1 of the IBC or ACI 318 Section 9.2 are used. if the load combinations of ACI 318 Appendix C are used, the appropriate value of ϕ_{sa} must be determined in accordance with ACI 318 D.4.4. Strong-Bolt 2 anchors are ductile steel elements as defined in ACI 318 D.1.

0.65

- 3. The tabulated value of ϕ_{CD} applies when both the load combinations of Section 1605.2.1 of the IBC or ACI 318 Section 9.2 are used and the requirements of ACI 318 D.4.3(c) for Condition B are met. Condition B applies where supplementary reinforcement is not provided. For installations where complying supplementary reinforcement can be verified, the ϕ_{cb} factors described in ACI 318 D.4.3 for Condition A are allowed. If the load combinations of ACI 318 Section 9.2 are used and the requirements of ACI 318 Section D.4.3 for Condition A are met, the appropriate value of ϕ_{cb} must be determined in accordance with ACI 318 D.4.3(c). If the load combinations of ACI 318 Appendix C are used, the appropriate value of ϕ_{cb} must be determined in accordance with ACI 318 D.4.4(c).
- 4. N/A (not applicable) denotes that pullout resistance does not need to be considered.
- 5. The characteristic pullout strength for greater concrete compressive strengths shall be increased by multiplying the tabular value by (f'c/2,500 ps))0.5.
- The tabulated value of ϕ_p or ϕ_{eq} applies when the load combinations of Section 1605.2.1 of the IBC or ACI 318 Section 9.2 are used and the requirements of ACI 318 D.4.3(c) for Condition B are met. if the load combinations of ACI 318 Appendix C are used, appropriate value of ϕ must be determined in accordance with ACI 318 Section D.4.4(c)
- 7. The 1/4-inch diameter carbon steel Strong-Bolt 2 anchor installation in cracked concrete is beyond the scope of this report.
- The 1/4-inch diameter (6.4mm) anchor may be installed in top of uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in the table on page 146.
- The %-inch through 1-inch diameter (9.5mm through 25.4mm) anchors may be installed in top of cracked and uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in the table on page 146.
- 10. For sand-lightweight concrete, in lieu of ACI 318 Section D.3.6, modify the value of concrete breakout strength N_{D,Cr}, N_{D,UnCr} and N_{ea} by 0.6. All-lightweight concrete is beyond the scope of this table.

Strength Reduction Factor -

Pullout Failure⁶

Mechanical Anchors

Stainless-Steel Strong-Bolt® 2 Tension Strength Design Data¹

	•	Z
IBC	337 332	LW

Characteristic	Cumbal	Units			Nomina	l Anchor	Diameter	; d _a (in.)			
GHALACTELISTIC	Symbol	UIIILS	1/410	3/	8 ¹¹	1/:	2 ¹¹	5,	/ 8 ¹¹	3,	/ ₄ ¹¹
Anchor Category	1, 2 or 3	_					1				
Nominal Embedment Depth	h _{nom}	in.	13⁄4	1%	21/8	23/4	37/8	3%	51/8	41/8	5¾
	Steel Stre	ength in T	ension (ACI 318 S	ection D.	5.1)						
Steel Strength in Tension	N _{sa}	lb.	3,060	5,1	140	12,	075	17,	930	25,	650
Strength Reduction Factor — Steel Failure ²	$\phi_{\scriptscriptstyle SA}$	_				0.	75				
Concr	ete Breako	ut Streng	th in Tension (ACI	318 Sect	ion D.5.2)12					
Effective Embedment Depth	h _{ef}	in.	1½	1½	2½	21/4	3%	2¾	41/2	3%	5
Critical Edge Distance	Cac	in.	21/2	6½	81/2	41/2	7	7½	9	8	8
Effectiveness Factor — Uncracked Concrete	k _{uncr}					2	24				
Effectiveness Factor — Cracked Concrete	k _{cr}	_	9				1	7			
Modification Factor	$\psi_{c,N}$		9				1.0	00			
Strength Reduction Factor — Concrete Breakout Failure ³	$\phi_{\it cb}$					0.	65				
	Pullout Stre	ength in T	ension (ACI 318 S	ection D.	5.3) ¹²						
Pullout Strength, Cracked Concrete (f'c=2,500 psi)	N _{p,cr}	lb.	9	1,7206	3,1456	2,5605	4,3055	N/A ⁴	6,545 ⁷	N/A ⁴	8,2305
Pullout Strength, Uncracked Concrete (f'c=2,500 psi)	N _{p,uncr}	lb.	1,925 ⁷	N/A ⁴	4,7706	3,2305	4,4955	N/A ⁴	7,6155	7,725 ⁷	9,6257
Strength Reduction Factor — Pullout Failure ⁸	$\phi_{ ho}$	_				0.	65				
Tensile	Strength fo	r Seismi	Applications (AC	1 318 Sec	tion D.3.	3.) ¹²					
Tension Strength of Single Anchor for Seismic Loads (f' $_{\rm c}$ =2,500 psi)	$N_{p.eq}$	lb.	9	1,7206	2,830 ⁶	2,5605	4,3055	N/A ⁴	6,545 ⁷	N/A ⁴	8,2305
Strength Reduction Factor — Pullout Failure ⁸	ϕ_{eq}	_				0.	65				

- 1. The information presented in this table must be used in conjunction with the design criteria of ACI 318 Appendix D, except as modified below.
- 2. The tabulated value of ϕ_{Sa} applies when the load combinations of Section 1605.2.1 of the IBC or ACI 318 Section 9.2 are used. if the load combinations of ACI 318 Appendix C are used, the appropriate value of ϕ_{Sa} must be determined in accordance with ACI 318 D.4.4. Strong-Bolt 2 anchors are ductile steel elements as defined in ACI 318 D.1.
- 3. The tabulated value of φ_{cb} applies when both the load combinations of Section 1605.2.1 of the IBC or ACI 318 Section 9.2 are used and the requirements of ACI 318 D.4.3(c) for Condition B are met. Condition B applies where supplementary reinforcement is not provided. For installations where complying supplementary reinforcement can be verified, the φ_{cb} factors described in ACI 318 D.4.3 for Condition A are allowed. If the load combinations of ACI 318 Section 9.2 are used and the requirements of ACI 318 Section D.4.3 for Condition A are met, the appropriate value of φ_{cb} must be determined in accordance with ACI 318 D.4.3(c). If the load combinations of ACI 318 Appendix C are used, the appropriate value of φ_{cb} must be determined in accordance with ACI 318 D.4.4(c).
- 4. N/A (not applicable) denotes that pullout resistance does not need to be considered.
- 5. The characteristic pullout strength for greater concrete compressive strengths shall be increased by multiplying the tabular value by (f'₀/2,500 ps))^{0.5}.
- 6. The characteristic pullout strength for greater concrete compressive strengths shall be increased by multiplying the tabular value by (f'_o/2,500 ps))^{0.3}.
- 7. The characteristic pullout strength for greater concrete compressive strengths shall be increased by multiplying the tabular value by (f'₀/2,500 psi)^{0.4}.
- The tabulated value of φ_p or φ_{eq} applies when the load combinations of Section 1605.2.1 of the IBC or ACI 318 Section 9.2 are used and the requirements of ACI 318 D.4.3(c) for Condition B are met. if the load combinations of ACI 318 Appendix C are used, appropriate value of φ must be determined in accordance with ACI 318 Section D.4.4(c).
- 9. The 1/4-inch diameter stainless steel Strong-Bolt 2 anchor installation in cracked concrete is beyond the scope of this report.
- 10. The ¼-inch diameter (6.4mm) anchor may be installed in top of uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in the table on page 147.
- 11. The %-inch through %-inch diameter (9.5mm through 19.1mm) anchors may be installed in top of cracked and uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in the table on page 147.
- 12. For sand-lightweight concrete, in lieu of ACI 318 Section D.3.6, modify the value of concrete breakout strength $N_{p,cr}$, $N_{p,uncr}$ and N_{eq} by 0.6. All-lightweight concrete is beyond the scope of this table.

IBC

Carbon Steel Strong-Bolt® 2 Shear Strength Design Data¹

Characteristic	Symbol	Units				Nomina	l Anchor	Diamete	r, d _a (in.)				
Gnaracteristic	Syllibol	UIIILS	1/46	3/	⁄8 ⁷	1/	⁄2 ⁷	5/87		3/47		1	7
Anchor Category	1, 2 or 3	_					1					2	2
Nominal Embedment Depth	h _{nom}	in.	13⁄4	1 1/8	27/8	2¾	37/8	3%	51/8	41/8	5¾	51/4	93/4
			Steel Strength in	Shear (A	CI 318 Se	ction D.6	5.1)						
Steel Strength in Shear	V _{sa}	lb.	965	1,8	300	7,2	235	11,	035	14,	480	15,	020
Strength Reduction Factor — Steel Failure ²	$\phi_{_{SA}}$	_				0.	65					0.	60
		Concre	te Breakout Stren	gth in Sh	ear (ACI	318 Sect	ion D.6.2))8					
Outside Diameter	da	in.	0.25	0.3	375	0.5	500	0.6	625	0.7	750	1.	00
Load-Bearing Length of Anchor in Shear	ℓ_e	in.	1.500	1.500	2.500	2.250	3.375	2.750	4.500	3.375	5.000	4.500	8.000
Strength Reduction Factor — Concrete Breakout Failure ²	ϕ_{cb}	_					0.	70					
		Conc	rete Pryout Streng	jth in She	ear (ACI 3	18 Section	on D.6.3)						
Coefficient for Pryout Strength	k _{cp}	_	1.0		2.0	1.0				2.0			
Effective Embedment Depth	h _{ef}	in.	1½	1½	2½	21/4	3%	2¾	41/2	3%	5	41/2	9
Strength Reduction Factor — Concrete Pryout Failure ⁴	$\phi_{\it cp}$	_					0.	70					
	Ste	el Streng	th in Shear for Se	ismic Ap _l	plications	(ACI 318	Section	D.3.3.)					
Shear Strength of Single Anchor for Seismic Loads (f'c=2,500 psi)	V _{sa.eq}	lb.	5	1,8	300	6,5	510	9,9	930	11,	775	15,	020
Strength Reduction Factor — Steel Failure ²	ϕ_{sa}	_				0.	65					0.	60

- 1. The information presented in this table must be used in conjunction with the design criteria of ACI 318 Appendix D, except as modified below.
- 2. The tabulated value of ϕ_{sa} applies when the load combinations of Section 1605.2.1 of the IBC or ACI 318 Section 9.2 are used and the requirements of ACI 318 D.4.3(c) for Condition B are met. if the load combinations of ACI 318 Appendix C are used, the appropriate value of ϕ_{sa} must be determined in accordance with ACI 318 D.4.4. Strong-Bolt 2 anchors are ductile steel elements as defined in ACI 318 D.1.
- 3. The tabulated value of ϕ_{cb} applies when both the load combinations of Section 1605.2.1 of the IBC or ACI 318 Section 9.2 are used and the requirements of ACI 318 D.4.3(c) for Condition B are met. Condition B applies where supplementary reinforcement is not provided. For installations where complying supplementary reinforcement can be verified, the ϕ_{cb} factors described in ACI 318 D.4.3 for Condition A are allowed. If the load combinations of ACI 318 Section 9.2 are used and the requirements of ACI 318 Section D.4.3 for Condition A are met, the appropriate value of ϕ_{cb} must be determined in accordance with ACI 318 D.4.3(c). If the load combinations of ACI 318 Appendix C are used, the appropriate value of ϕ_{cb} must be determined in accordance with ACI 318 D.4.4(c).
- 4. The tabulated value of ϕ_{CP} applies when both the load combinations of ACI 318 Section 9.2 are used and the requirements of ACI 318 D.4.3(c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, appropriate value of ϕ_{CP} must be determined in accordance with ACI 318 Section D.4.4(c).
- 5. The 1/4-inch diameter carbon steel Strong-Bolt 2 anchor installation in cracked concrete is beyond the scope of this report.
- 6. The ¼-inch diameter (6.4mm) anchor may be installed in top of uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in the table on page 146.
- 7. The %-inch through 1-inch diameter (9.5mm through 25.4mm) anchors may be installed in top of cracked and uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in the table on page 146.
- 8. For sand-lightweight concrete, in lieu of ACI 318 Section D.3.6, modify the value of concrete breakout by 0.6. All-lightweight concrete is beyond the scope of this table.

Stainless-Steel Strong-Bolt® 2 Shear Strength Design Data1

Characteristic	Symbol	Units		Nominal Anchor Diameter, d _a (in.)															
Gilalacteristic	Syllibol	UIIILS	1/46	3,	8 ⁷	1/	[′] 2 ⁷	5,	⁄8 ⁷	3,	⁄4 ⁷								
Anchor Category	1, 2 or 3	_					1												
Nominal Embedment Depth	h _{nom}	in.	13⁄4	1 1/8	27/8	23/4	37/8	3%	51/8	41/8	5¾								
	Steel Str	ength in	Shear (ACI 318 S	ection D.6	.1)														
Steel Strength in Shear	V _{sa}	lb.	1,605	3,0)85	7,2	245	6,745	10,760	15,	045								
Strength Reduction Factor — Steel Failure ²	ϕ_{sa}	_				0.	65												
Con	crete Break	out Stren	ut Strength in Shear (ACI 318 Section D.6.2) ⁸																
Outside Diameter	d _a	in.	0.250	0.3	375	0.5	500	0.6	625	0.7	750								
Load Bearing Length of Anchor in Shear	ℓ_e	in.	1.500	1.500	2.500	2.250	3.375	2.750	4.500	3.375	5.000								
Strength Reduction Factor — Concrete Breakout Failure ³	фcb					0.	70												
Co	ncrete Pryo	ut Streng	th in Shear (ACI	318 Section	on D.6.3)						15,045 0.750 3.375 5.000								
Coefficient for Pryout Strength	k _{cp}	_	1.0		2.0	1.0			2.0										
Effective Embedment Depth	h _{ef}	in.	1½	1 ½	2½	21/4	3%	2¾	41/2	3%	5								
Strength Reduction Factor — Concrete Pryout Failure ⁴	ϕ_{cp}	_				0.	70												
Steel Stre	ngth in She	ar for Sei	smic Application	s (ACI 318	Section	D.3.3.)													
Shear Strength of Single Anchor for Seismic Loads (f' $_{c}$ =2,500 psi)	V _{sa.eq}	lb.	5	3,0)85	6,1	00	6,745	10,760	13,	620								
Strength Reduction Factor — Steel Failure ²	ϕ_{sa}	_				0.	65												

- 1. The information presented in this table must be used in conjunction with the design criteria of ACI 318 Appendix D, except as modified below.
- 2. The tabulated value of ϕ_{sa} applies when the load combinations of Section 1605.2.1 of the IBC or ACI 318 Section 9.2 are used and the requirements of ACI 318 D.4.3(c) Condition B are met. If the load combinations of ACI 318 Appendix C are used, the appropriate value of ϕ_{sa} must be determined in accordance with ACI 318 D.4.3.(c) for Strong-Bolt 2 anchors are ductile steel elements as defined in ACI 318 D.1.
- 3. The tabulated value of ϕ_{cb} applies when both the load combinations of Section 1605.2.1 of the IBC or ACI 318 Section 9.2 are used and the requirements of ACI 318 D.4.3(c) for Condition B are met. Condition B applies where supplementary reinforcement is not provided. For installations where complying supplementary reinforcement can be verified, the ϕ_{cb} factors described in ACI 318 D.4.3 for Condition A are allowed. If the load combinations of ACI 318 Section 9.2 are used and the requirements of ACI 318 Section D.4.3 for Condition A are met, the appropriate value of ϕ_{cb} must be determined in accordance with ACI 318 D.4.3(c). If the load combinations of ACI 318 Appendix C are used, the appropriate value of ϕ_{cb} must be determined in accordance with ACI 318 D.4.4(c).
- 4. The tabulated value of ϕ_{CP} applies when both the load combinations of ACI 318 Section 9.2 are used and the requirements of ACI 318 D.4.3(c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, appropriate value of ϕ_{CP} must be determined in accordance with ACI 318 Section D.4.4(c).
- 5. The 1/4-inch diameter stainless-steel Strong-Bolt 2 anchor installation in cracked concrete is beyond the scope of this report.
- 6. The ¼-inch diameter (6.4mm) anchor may be installed in top of uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in the table on page 147.
- 7. The %-inch through %-inch diameter (9.5mm through 19.1mm) anchors may be installed in top of cracked and uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in the table on page 147.
- 8. For sand-lightweight concrete, in lieu of ACI 318 Section D.3.6, modify the value of concrete breakout by 0.6. All-lightweight concrete is beyond the scope of this table.

Carbon Steel Strong-Bolt® 2 Information for Installation in the Topside of Concrete-Filled Profile Steel Deck Floor and Roof Assemblies^{1,2,3,4}

Design Information	Symbol	Units	Nomir	nal Anchor Diamet	er (in.)
Design information	Syllibol	Ullits	3,	/s	1/2
Nominal Embedment Depth	h _{nom}	in.	1	7/8	2¾
Effective Embedment Depth	h _{ef}	in.	1	1/2	21/4
Minimum Concrete Thickness ⁵	h _{min,deck}	in.	21/2	31/4	31/4
Critical Edge Distance	C _{ac,deck,top}	in.	43/4	4	4
Minimum Edge Distance	C _{min,deck,top}	in.	4¾	41/2	43⁄4
Minimum Spacing	S _{min,deck,top}	in.	7	61/2	8

For SI: 1 inch = 25.4mm; 1 lbf = 4.45N

- 1. Installation must comply with the table on page 146 and Figure 1 below.
- 2. Design capacity shall be based on calculations according to values in the tables on pages 148 and 150.
- 3. Minimum flute depth (distance from top of flute to bottom of flute) is 11/2 inches.
- 4. Steel deck thickness shall be a minimum 20 gauge.
- 5. Minimum concrete thickness ($h_{min,deck}$) refers to concrete thickness above upper flute.

Stainless-Steel Strong-Bolt® 2 Information for Installation in the Topside of Concrete-Filled Profile Steel Deck Floor and Roof Assemblies^{1,2,3,4}

Design Information	Cymbol	Units	Nominal Anchor Diameter (in.)						
Design information	Symbol	Ullits	3,	/s	1/2				
Nominal Embedment Depth	h _{nom}	in.	17	7/8	23/4				
Effective Embedment Depth	h _{ef}	in.	1	1/2	21/4				
Minimum Concrete Thickness ⁵	h _{min,deck}	in.	21/2	31/4	31/4				
Critical Edge Distance	Cac,deck,top	in.	43/4	4	4				
Minimum Edge Distance	C _{min,deck,top}	in.	43	3/4	6				
Minimum Spacing	S _{min,deck,top}	in.	6	1/2	8				

For SI: 1 inch = 25.4mm; 1 lbf = 4.45N

- 1. Installation must comply with the table on page 147 and Figure 1 below.
- 2. Design capacity shall be based on calculations according to values in the tables on pages 149 and 151.
- 3. Minimum flute depth (distance from top of flute to bottom of flute) is $1\,\%$ inches.
- 4. Steel deck thickness shall be a minimum 20 gauge.
- 5. Minimum concrete thickness ($h_{min,deck}$) refers to concrete thickness above upper flute.

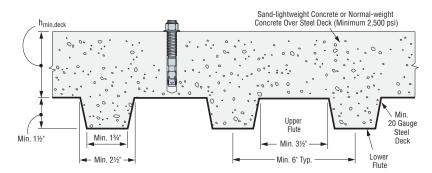
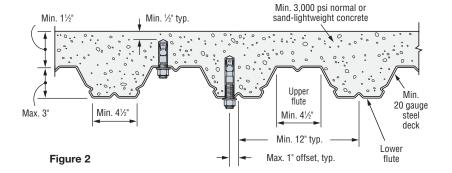



Figure 1

^{*} See page 12 for an explanation of the load table icons.

Carbon Steel Strong-Bolt[®] 2 Tension and Shear Strength Design Data for the Soffit of Concrete over Profile Steel Deck Floor and Roof Assemblies^{1,2,6,8,9}

;	1	→	
_			

						Nominal A	Anchor Dia	neter (in.)			
Characteristic	Cumbal	Units				C	arbon Ste	el			
Graracteristic	Symbol	Units				ower Flut	е			Upper	Flute
			3,	/ 8	1,	⁄2	5,	8	3/4	3/8	1/2
Nominal Embedment Depth	h _{nom}	in.	2	3%	2¾	4 1/2	3%	5%	41/8	2	2¾
Effective Embedment Depth	h _{ef}	in.	1 5/8	3	21/4	4	23/4	5	3%	1 1 1/8	21/4
Installation Torque	T _{inst}	ftlbf.	3	80	6	0	9	0	150	30	60
Pullout Strength, concrete on metal deck (cracked)3,4	N _{p,deck,cr}	lb.	1,0407	2,615 ⁷	2,0407	2,730 ⁷	2,615 ⁷	4,9907	2,815 ⁷	1,340 ⁷	3,7857
Pullout Strength, concrete on metal deck (uncracked) ^{3,4}	N _{p,deck,uncr}	lb.	1,765 ⁷	3,150 ⁷	2,580 ⁷	3,8407	3,685 ⁷	6,565 ⁷	3,8007	2,275 ⁷	4,795 ⁷
Pullout Strength, concrete on metal deck (seismic)3,4	N _{p,deck,eq}	lb.	1,040 ⁷	2,615 ⁷	2,040 ⁷	2,7307	2,615 ⁷	4,9907	2,815 ⁷	1,340 ⁷	3,785 ⁷
Steel Strength in Shear, concrete on metal deck ⁵	V _{sa,deck}	lb.	1,595	3,490	2,135	4,580	2,640	7,000	4,535	3,545	5,920
Steel Strength in Shear, concrete on metal deck (seismic) ⁵	V _{sa,deck,eq}	lb.	1,595	3,490	1,920	4,120	2,375	6,300	3,690	3,545	5,330

- The information presented in this table must be used in conjunction with the design criteria of ACI 318 Appendix D, except as modified below.
- 2. Profile steel deck must comply with the configuration in Figure 2 on the previous page, and have a minimum base-steel thickness of 0.035 inch [20 gauge]. Steel must comply with ASTM A 653/A 653M SS Grade 33 with minimum yield strength of 33,000 psi. Concrete compressive strength shall be 3,000 psi minimum.
- For anchors installed in the soffit of sand-lightweight or normal-weight concrete over metal deck floor and roof assemblies, calculation of the concrete breakout strength may be omitted.
- 4. In accordance with ACI 318 Section D.5.3.2, the nominal pullout strength in cracked concrete for anchors installed in the soffit of sand-lightweight or normal-weight concrete over metal deck floor and rood assemblies N_{D,deck.cr} shall be substituted for N_{D,cr}. Where analysis indicates no cracking at service
- loads, the normal pullout strength in uncracked concrete $N_{p,deck,uncr}$ shall be substituted for $N_{p,uncr}$. For seismic loads, $N_{p,deck,eq}$ shall be substituted for N_p
- 5. In accordance with ACI 318 Section D.6.1.2(c), the shear strength for anchors installed in the soffit of sand-lightweight or normal-weight concrete over metal deck floor and rood assemblies V_{sa}, deck shall be substituted for V_{sa}. For seismic loads, V_{sa,deck,eq} shall be substituted for V_{sa}.
- 6. The minimum anchor spacing along the flute must be the greater of $3.0h_{\rm ef}$ or 1.5 times the flute width.
- The characteristic pull-out strength for greater concrete compressive strengths shall be increased by multiplying the tabular value by (f'_c / 3,000 psi)^{0.5}.
- 8. Concrete shall be normal-weight or structural sand-lightweight concrete having a minimum specified compressive strength, f'c, of 3,000 psi.
- 9. Minimum distance to edge of panel is 2hef.

Stainless Steel Strong-Bolt® 2 Tension and Shear Strength Design Data for the Soffit of Concrete over Profile Steel Deck Floor and Roof Assemblies^{1,2,6,10,11}

Mechanical Anchors

		Stainless Steel											
Characteristic	Symbol	Units				Lower Flut	е			Uppei	Flute		
			3,	/8	1	/2	5,	/8	3/4	3/8	1/2		
Nominal Embedment Depth	h _{nom}	in.	2	3%	2¾	41/2	3%	5%	41/8	2	23/4		
Effective Embedment Depth	h _{ef}	in.	1 1 1/8	3	21/4	4	23/4	5	3%	1 5/8	21/4		
Installation Torque	T _{inst}	ftlbf.	3	0	6	60	8	0	150	30	60		
Pullout Strength, concrete on metal deck (cracked) ³	N _{p,deck,cr}	lb.	1,2308	2,6058	1,990 ⁷	2,550 ⁷	1,750 ⁹	4,0209	3,0307	1,5508	2,055 ⁷		
Pullout Strength, concrete on metal deck (uncracked) ³	N _{p,deck,uncr}	lb.	1,5808	3,9508	2,475 ⁷	2,660 ⁷	2,470 ⁷	5,000 ⁷	4,275 ⁹	1,9908	2,560 ⁷		
Pullout Strength, concrete on metal deck (seismic) ⁵	N _{p,deck,eq}	lb.	1,2308	2,3458	1,990 ⁷	2,550 ⁷	1,750 ⁹	4,0209	3,0307	1,5508	2,0557		
Steel Strength in Shear, concrete on metal deck4	V _{sa,deck}	lb.	2,285	3,085	3,430	4,680	3,235	5,430	6,135	3,085	5,955		
Steel Strength in Shear, concrete on metal deck (seismic) ⁵	V _{sa,deck,eq}	lb.	2,285	3,085	2,400	3,275	3,235	5,430	5,520	3,085	4,170		

- The information presented in this table must be used in conjunction with the design criteria of ACI 318 Appendix D, except as modified below.
- Profile steel deck must comply with the configuration in Figure 2 on the previous page, and have a minimum base-steel thickness of 0.035 inch [20 gauge]. Steel must comply with ASTM A 653/A 653M SS Grade 33 with minimum yield strength of 33,000 psi. Concrete compressive strength shall be 3.000 psi minimum.
- For anchors installed in the soffit of sand-lightweight or normal-weight concrete over metal deck floor and roof assemblies, calculation of the concrete breakout strength may be omitted.
- 4. In accordance with ACI 318 Section D.5.3.2, the nominal pullout strength in cracked concrete for anchors installed in the soffit of sand-lightweight or normal-weight concrete over metal deck floor and rood assemblies N_{p,deck,cr} shall be substituted for N_{p,cr}. Where analysis indicates no cracking at service loads, the normal pullout strength in uncracked concrete N_{p,deck,uror} shall be substituted for N_{p,uncr}. For seismic loads, N_{p,deck,eq} shall be substituted for N_p.
- In accordance with ACI 318 Section D.6.1.2(c), the shear strength for anchors installed in the soffit of sand-lightweight or normal-weight concrete over metal deck floor and rood assemblies V_{sa}, deck shall be substituted for V_{sa}. For seismic loads, V_{sa}, deck,eg shall be substituted for V_{sa}.
- 6. The minimum anchor spacing along the flute must be the greater of $3.0h_{\rm ef}$ or 1.5 times the flute width.
- The characteristic pull-out strength for greater concrete compressive strengths shall be increased by multiplying the tabular value by (f'_c / 3,000 psi)^{0.5}.
- 8. The characteristic pull-out strength for greater concrete compressive strengths shall be increased by multiplying the tabular value by $(f^{\circ}_{c}/3,000 \text{ psi})^{0.3}$.
- The characteristic pull-out strength for greater concrete compressive strengths shall be increased by multiplying the tabular value by (f¹_C / 3,000 psi)^{0.4}.
- Concrete shall be normal-weight or structural sand-lightweight concrete having a minimum specified compressive strength, f'_c, of 3,000 psi.
- 11. Minimum distance to edge of panel is 2hef.

^{*} See page 12 for an explanation of the load table icons.

Carbon Steel Strong-Bolt® 2 Tension Design Strengths in Normal-Weight Concrete (f'_C = 2,500 psi)

		Min	Min. Critical N		Tension Design Strength (lb.)										
Anchor Dia.	Nominal Embed. Depth	Concrete Thickness	Edge Distance	Minimum Edge Distance c _{min} (in.)	Edge	Distances	= c _{ac} on all s	ides	Edge Distances = c _{min} on one side and c _{ac} on three sides						
(in.)	(in.)	h _{min} (in.)	c _{ac} (in.)		SDC A-B ⁵		SDC C-F ^{6,7}		SDC A-B ⁵		SDC C-F ^{6,7}				
		(111.)	(111.)		Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked			
1/4	13/4	31/4	21/2	13/4	1,435	_	_	_	1,070	_	_	_			
3/8	17/8	31/4	61/2	6	1,435	845	1,075	635	1,325	845	990	635			
9/8	27/8	41/2	6	6	2,170	1,805	1,630	1,355	2,170	1,805	1,630	1,355			
1/2	23/4	41/2	7	7	2,350	1,865	1,760	1,400	2,350	1,865	1,760	1,400			
1/2	37/8	6	71/2	4	3,415	2,430	2,560	1,820	2,740	2,430	2,055	1,820			
5/8	3%	5½	71/2	61/2	3,555	2,520	2,665	1,890	3,085	2,520	2,310	1,890			
78	51/8	77/8	9	61/2	5,865	4,480	4,400	3,360	5,420	4,480	4,065	3,360			
3/4	41/8	6¾	9	61/2	4,625	3,425	3,470	2,570	3,495	3,425	2,620	2,570			
94	5¾	8¾	8	61/2	5,765	5,525	4,325	4,145	5,765	5,525	4,325	4,145			
1	51/4	9	18	8	4,600	4,235	3,450	3,175	2,800	4,235	2,100	3,175			
	93/4	131/2	131/2	8	5,330	6,150	3,995	4,615	5,330	6,150	3,995	4,615			

- 1. Tension design strengths are based on the strength design provisions of ACI 318-11 Appendix D.
- 2. Tabulated values are for a single anchor with no influence of another anchor.
- 3. Interpolation between embedment depths is not permitted.
- 4. Strength reduction factor, φ, is based on using a load combination from ACI 318-11 Section 9.2.
- 5. The tension design strength listed for SDC (Seismic Design Category) A-B may also be used in SDC C-F when the tension component of the strength-level seismic design load on the anchor does not exceed 20% of the total factored tension load on the anchor associated with the same load combination.
- 6. When designing anchorages in SDC C-F, the designer shall consider the ductility requirements of ACI 318-11 Section D.3.3.
- 7. Tension design strengths in SDC C-F have been adjusted by 0.75 factor in accordance with ACI 318-11 Section D.3.3.4.4.

Carbon Steel Strong-Bolt® 2 Allowable Tension Loads in Normal-Weight Concrete ($f'_c = 2,500 \text{ psi}$) — Static Load

				Minimum Edgo		Allowable Ten	sion Load (lb.)	
Anchor Dia. (in.)	Nominal Embed. Depth (in.)	Min. Concrete Thickness h _{min} (in.)	Critical Edge Distance c _{ac} (in.)	Minimum Edge Distance c _{min} (in.)	Euge Dis	Edge Distances = c _{ac} on all sides		c _{min} on one side three sides
		, ,			Uncracked	Cracked	Uncracked	Cracked
1/4	13/4	31/4	21/2	13/4	1,025	_	765	_
3/8	17/8	31/4	61/2	6	1,025	605	945	605
78	27/8	41/2	6	6	1,550	1,290	1,550	1,290
1/2	23/4	41/2	7	7	1,680	1,330	1,680	1,330
72	37/8	6	71/2	4	2,440	1,735	1,955	1,735
5/8	3%	5½	71/2	61/2	2,540	1,800	2,205	1,800
78	51/8	77/8	9	61/2	4,190	3,200	3,870	3,200
3/4	41/8	63/4	9	61/2	3,305	2,445	2,495	2,445
94	53/4	83⁄4	8	61/2	4,120	3,945	4,120	3,945
1	51/4	9	18	8	3,285	3,025	2,000	3,025
l	93⁄4	13½	13½	8	3,805	4,395	3,805	4,395

^{1.} Allowable tension loads are calculated based on the strength design provision of ACI 318-11 Appendix D using a conversion factor of α = 1.4. The conversion factor α is based on the load combination 1.2D + 1.6L assuming 50% dead load and 50% live load: 1.2(0.5) + 1.6(0.5) = 1.4.

^{2.} Tabulated values are for a single anchor with no influence of another anchor.

^{3.} Interpolation between embedment depths is not permitted.

Carbon Steel Strong-Bolt® 2 Allowable Tension Loads in Normal-Weight Concrete (f $_{\rm C}=2,\!500$ psi) — Wind Load

				Minimum Edge		Allowable Ten	sion Load (lb.)	
Anchor Dia. (in.)	Nominal Embed. Depth (in.)	Min. Concrete Thickness h _{min} (in.)	Critical Edge Distance c _{ac} (in.)	Minimum Edge Distance c _{min} (in.)	Edge Dis c _{ac} on a	tances = III sides	Edge Distances side and c _{ac} o	s = c _{min} on one on three sides
		(,			Uncracked	Cracked	Uncracked	Cracked
1/4	13/4	31/4	21/2	13/4	860	_	640	_
2/	17/8	31/4	61/2	6	860	505	795	505
3/8	27/8	41/2	6	6	1,300	1,085	1,300	1,085
1/	23/4	41/2	7	7	1,410	1,120	1,410	1,120
1/2	37/8	6	71/2	4	2,050	1,460	1,645	1,460
5/	3%	51/2	71/2	61/2	2,135	1,510	1,850	1,510
5/8	51/8	77/8	9	61/2	3,520	2,690	3,250	2,690
3/4	41/8	6¾	9	61/2	2,775	2,055	2,095	2,055
94	53/4	8¾	8	61/2	3,460	3,315	3,460	3,315
1	51/4	9	18	8	2,760	2,540	1,680	2,540
	93/4	131/2	13½	8	3,200	3,690	3,200	3,690

^{1.} Allowable tension loads are calculated based on the strength design provision of ACI 318-11 Appendix D using a conversion factor of $\alpha = \%.6$ = 1.67. The conversion factor α is based on the load combination assuming 100% wind load.

- 2. Tabulated values are for a single anchor with no influence of another anchor.
- 3. Interpolation between embedment depths is not permitted.

Carbon Steel Strong-Bolt® 2 Allowable Tension Loads in Normal-Weight Concrete (f' $_{\rm C}=2,\!500$ psi) — Seismic Load

Mechanical Anchors

			Distance c _{ac}				Al	lowable Ten	ision Load (II	o.)			
Anchor Dia.	Nominal Embed. Depth			ge Minimum Edge Distance c _{min} (in.)	Edge	Distances	= c _{ac} on all s	sides	Edge	Distances = and c _{ac} on	= c _{min} on one three sides	c _{min} on one side three sides	
(in.)	(in.)	(in.)			SDC	SDC A-B ⁴		C-F ^{5,6}	SDC A-B ⁴		SDC (C-F ^{5,6}	
					Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked	
1/4	13/4	31/4	21/2	13/4	1,005	_	_	_	750	_	_	_	
3/8	1 1//8	31/4	61/2	6	1,005	590	755	445	930	590	695	445	
9/8	27/8	41/2	6	6	1,520	1,265	1,140	950	1,520	1,265	1,140	950	
1/	2¾	41/2	7	7	1,645	1,305	1,230	980	1,645	1,305	1,230	980	
1/2	37/8	6	71/2	4	2,390	1,700	1,790	1,275	1,920	1,700	1,440	1,275	
E/	3%	51/2	71/2	61/2	2,490	1,765	1,865	1,325	2,160	1,765	1,615	1,325	
5/8	51/8	77/8	9	61/2	4,105	3,135	3,080	2,350	3,795	3,135	2,845	2,350	
2/	41/8	63/4	9	61/2	3,240	2,400	2,430	1,800	2,445	2,400	1,835	1,800	
3/4	5¾	83/4	8	61/2	4,035	3,870	3,030	2,900	4,035	3,870	3,030	2,900	
1	51/4	9	18	8	3,220	2,965	2,415	2,225	1,960	2,965	1,470	2,225	
	93/4	131/2	131/2	8	3,730	4,305	2,795	3,230	3,730	4,305	2,795	3,230	

^{1.} Allowable tension loads are calculated based on the strength design provision of ACI 318-11 Appendix D using a conversion factor of $\alpha = \%.7 = 1.43$. The conversion factor α is based on the load combination assuming 100% seismic load.

C-A-2016 @ 2015 SIMPSON STRONG-TIE COMPANY INC.

^{2.} Tabulated values are for a single anchor with no influence of another anchor.

^{3.} Interpolation between embedment depths is not permitted.

^{4.} The allowable tension load listed for SDC (Seismic Design Category) A-B may also be used in SDC C-F when the tension component of the strength-level seismic design load on the anchor does not exceed 20% of the total factored tension load on the anchor associated with the same load combination.

^{5.} When designing anchorages in SDC C-F, the designer shall consider the ductility requirements of ACI 318-11 Section D.3.3.

^{6.} Tension design strengths in SDC C-F have been adjusted by 0.75 factor in accordance with ACI 318-11 Section D.3.3.4.4.

^{*} See page 12 for an explanation of the load table icons.

Stainless Steel Strong-Bolt® 2 Tension Design Strengths in Normal-Weight Concrete (f'c = 2,500 psi)

		Min. Concrete Thickness h _{min} (in.)					Ter	nsion Desig	n Strength (I	b.)		
Anchor Dia.	Nominal Embed. Depth		Distance c _{ac}	Minimum Edge Distance c _{min} (in.)	e Edge Distances = c _{ac} on all sides				Edge Distances = c_{min} on one side and c_{ac} on three sides			
(in.)	(in.)		(in.)		SDC	A-B ⁵	SDC (C-F ^{6,7}	SDC	A-B ⁵	SDC (C-F ^{6,7}
					Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked
1/4	13/4	31/4	21/2	1 3/4	1,250	_	_	_	1,070	_	_	_
3/8	17/8	31/4	61/2	6	1,435	1,015	1,075	760	1,325	1,015	990	760
9/8	21/8	41/2	81/2	6	3,085	2,045	2,090	1,380	2,175	2,045	1,630	1,380
1/	23/4	41/2	61/2	61/2	2,100	1,665	1,575	1,250	2,100	1,665	1,575	1,250
1/2	37/8	6	7	5	2,920	2,800	2,190	2,100	2,920	2,800	2,190	2,100
5/8	3%	51/2	71/2	4	3,555	2,520	2,665	1,890	1,910	2,460	1,430	1,845
7/8	51/8	77/8	9	4	4,950	4,255	3,710	3,190	3,905	3,685	2,925	2,765
3/4	41/8	6¾	8	6	4,835	3,425	3,625	2,570	3,625	3,425	2,720	2,570
9/4	5¾	8¾	8	6	6,255	5,350	4,690	4,010	6,255	5,225	4,690	3,920

- 1. Tension design strengths are based on the strength design provisions of ACI 318-11 Appendix D.
- 2. Tabulated values are for a single anchor with no influence of another anchor.
- 3. Interpolation between embedment depths is not permitted.
- 4. Strength reduction factor, φ, is based on using a load combination from ACI 318-11 Section 9.2.
- 5. The tension design strength listed for SDC (Seismic Design Category) A-B may also be used in SDC C-F when the tension component of the strength-level seismic design load on the anchor does not exceed 20% of the total factored tension load on the anchor associated with the same load combination.
- 6. When designing anchorages in SDC C-F, the designer shall consider the ductility requirements of ACI 318-11 Section D.3.3.
- 7. Tension design strengths in SDC C-F have been adjusted by 0.75 factor in accordance with ACI 318-11 Section D.3.3.4.4.

Stainless Steel Strong-Bolt® 2 Allowable Tension Loads in Normal-Weight Concrete (f' $_{\rm C}=2,\!500$ psi) — Static Load

				Minimum Edge		Allowable Ten	sion Load (lb.)		
Anchor Dia. (in.)	Nominal Embed. Depth (in.)	Min. Concrete Thickness h _{min} (in.)	Critical Edge Distance c _{ac} (in.)	Minimum Edge Distance c _{min} (in.)	Edge Distances :	= c _{ac} on all sides	Edge Distances = c_{min} on one sides		
			(***)		Uncracked	Cracked	Uncracked	Cracked	
1/4	13/4	31/4	21/2	13⁄4	895	_	765	_	
2/	17/8	31/4	61/2	6	1,025	725	945	725	
3/8	27/8	41/2	81/2	6	2,205	1,460	1,555	1,460	
1/	23/4	41/2	61/2	61/2	1,500	1,190	1,500	1,190	
1/2	37/8	6	7	5	2,085	2,000	2,085	2,000	
5/	3%	51/2	71/2	4	2,540	1,800	1,365	1,755	
5/8	51/8	71/8	9	4	3,535	3,040	2,790	2,630	
3/	41/8	6¾	8	6	3,455	2,445	2,590	2,445	
3/4	53/4	83⁄4	8	6	4,470	3,820	4,470	3,730	

^{1.} Allowable tension loads are calculated based on the strength design provision of ACI 318-11 Appendix D using a conversion factor of α = 1.4. The conversion factor α is based on the load combination 1.2D + 1.6L assuming 50% dead load and 50% live load: 1.2(0.5) + 1.6(0.5) = 1.4.

- 2. Tabulated values are for a single anchor with no influence of another anchor.
- 3. Interpolation between embedment depths is not permitted.

Mechanical Anchors

Strong-Bolt® 2 Design Information — Concrete

Stainless Steel Strong-Bolt® 2 Allowable Tension Loads in Normal-Weight Concrete (f' $_{\rm C}$ = 2,500 psi) — Wind Load

					Allowable Tension Load (lb.)					
Anchor Dia. (in.)	Nominal Embed. Depth (in.)	Min. Concrete Thickness h _{min} (in.)	Critical Edge Distance c _{ac} (in.)	Minimum Edge Distance c _{min}	Edge Dis c _{ac} on a	tances = all sides	Edge Distances = c_{min} on one side and C_{ac} on three sides			
				(in.)	Uncracked	Cracked	Uncracked	Cracked		
1/4	13/4	31/4	21/2	13⁄4	750	_	640	_		
3/8	17/8	31/4	61/2	6	860	610	795	610		
98	27/8	41/2	81/2	6	1,850	1,225	1,305	1,225		
1/2	23/4	41/2	61/2	61/2	1,260	1,000	1,260	1,000		
7/2	37/8	6	7	5	1,750	1,680	1,750	1,680		
5/8	3%	5½	71/2	4	2,135	1,510	1,145	1,475		
9/8	51/8	77/8	9	4	2,970	2,555	2,345	2,210		
3/4	41/8	6¾	8	6	2,900	2,055	2,175	2,055		
9/4	5¾	83/4	8	6	3,755	3,210	3,755	3,135		

^{1.} Allowable tension loads are calculated based on the strength design provision of ACI 318-11 Appendix D using a conversion factor of $\alpha = \%.6 = 1.67$. The conversion factor α is based on the load combination assuming 100% wind load.

- 2. Tabulated values are for a single anchor with no influence of another anchor.
- 3. Interpolation between embedment depths is not permitted.

Stainless Steel Strong-Bolt® 2 Allowable Tension Loads in Normal-Weight Concrete (f' = 2.500 psi) — Seismic Load

(I c = 2,000 pol) Colornio Lodd												
		Min.	Critical	Minimum			All	owable Ten	sion Load (II	b.)		
Anchor Dia.	Nominal Embed. Depth	Concrete Thickness	Edge Distance	Edge Distance	Edge Distances = c _{ac} on all sides				Edge Distances = c_{min} on one side and c_{ac} on three sides			e side
(in.)	(in.)	h _{min}	Cac	C _{min}			SDC C-F ^{5,6}		SDC A-B ⁴		SDC C-F ^{5,6}	
		(in.)	(in.)	(in.)	Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked
1/4	13⁄4	31/4	21/2	13⁄4	875	_	_	_	750	_	_	_
3/8	1 1//8	31/4	61/2	6	1,005	710	755	530	930	710	695	530
9/8	21/8	41/2	81/2	6	2,160	1,430	1,465	965	1,525	1,430	1,140	965
1/2	23/4	41/2	61/2	61/2	1,470	1,165	1,105	875	1,470	1,165	1,105	875
/2	37/8	6	7	5	2,045	1,960	1,535	1,470	2,045	1,960	1,535	1,470
5/8	3%	51/2	71/2	4	2,490	1,765	1,865	1,325	1,335	1,720	1,000	1,290
9/8	51/8	77/8	9	4	3,465	2,980	2,595	2,235	2,735	2,580	2,050	1,935
3/4	41/8	6¾	8	6	3,385	2,400	2,540	1,800	2,540	2,400	1,905	1,800
9/4	53/4	83⁄4	8	6	4,380	3,745	3,285	2,805	4,380	3,660	3,285	2,745

^{1.} Allowable tension loads are calculated based on the strength design provision of ACI 318-11 Appendix D using a conversion factor of $\alpha = \%.7 = 1.43$. The conversion factor α is based on the load combination assuming 100% seismic load.

- 2. Tabulated values are for a single anchor with no influence of another anchor.
- 3. Interpolation between embedment depths is not permitted.

- 5. When designing anchorages in SDC C-F, the designer shall consider the ductility requirements of ACI 318-11 Section D.3.3.
- 6. Tension design strengths in SDC C-F have been adjusted by 0.75 factor in accordance with ACI 318-11 Section D.3.3.4.4.

^{4.} The allowable tension load listed for SDC (Seismic Design Category) A-B may also be used in SDC C-F when the tension component of the strength-level seismic design load on the anchor does not exceed 20% of the total factored tension load on the anchor associated with the same load combination.

^{*} See page 12 for an explanation of the load table icons.

Carbon Steel Strong-Bolt® 2 Tension Design Strengths in Soffit of Normal-Weight or Sand-Lightweight Concrete-Filled Profile Steel Deck Assemblies ($f'_c = 3,000$ psi)

IB	C	1	~ *
ID	U	20 33	

	Nominal Embed. Depth	Minimum End Distance c _{min} - (in.)			T	ension Desig	n Strength (lb	.)			
Anchor Dia.				Lowe	r Flute		Upper Flute				
(in.)			SDC	A-B ⁵	SDC C-F ^{6,7}		SDC	A-B ⁵	SDC C-F ^{6,7}		
(in.)		(/	Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked	
3/8	2	31/4	1,145	675	860	505	1,480	870	1,110	655	
78	3%	6	2,050	1,700	1,535	1,275	_	_	_	_	
1/2	23/4	41/2	1,675	1,325	1,260	995	3,115	2,460	2,340	1,845	
72	41/2	8	2,495	1,775	1,870	1,330	_	_	_	_	
5/8	3%	5½	2,395	1,700	1,795	1,275	_	_	_	_	
9/8	5%	10	4,265	3,245	3,200	2,435	_	_	_	_	
3/4	41/8	6¾	2,470	1,830	1,855	1,370	_	_	_	_	

- 1. Tension design strengths are based on the strength design provisions of ACI 318-11 Appendix D.
- 2. Tabulated values are for a single anchor with no influence of another anchor.
- 3. Interpolation between embedment depths is not permitted.
- 4. Strength reduction factor, ϕ , is based on using a load combination from ACI 318-11 Section 9.2.
- 5. The tension design strength listed for SDC (Seismic Design Category) A-B may also be used in SDC C-F when the tension component of the strength-level seismic design load on the anchor does not exceed 20% of the total factored tension load on the anchor associated with the same load combination.
- 6. When designing anchorages in SDC C-F, the designer shall consider the ductility requirements of ACI 318-11 Section D.3.3.
- 7. Tension design strengths in SDC C-F have been adjusted by 0.75 factor in accordance with ACI 318-11 Section D.3.3.4.4.
- 8. Installation must comply with Figure 2 on page 152.

Carbon Steel Strong-Bolt® 2 Allowable Tension Loads in Soffit of Normal-Weight or Sand-Lightweight Concrete-Filled Profile Steel Deck Assemblies (f' $_{\rm c}=3,\!000$ psi) — Static Load

	Nominal	Minimum End		Allowable Ten	sion Load (lb.)	
Anchor Dia. (in.)	Embed. Depth	Distance c _{min}	Lower	Flute	Upper	Flute
(,	(in.)	(in.)	Uncracked	Cracked	Uncracked	Cracked
3/8	2	31/4	820	480	1,055	620
9/8	3%	6	1,465	1,215	_	_
1/2	23/4	41/2	1,195	945	2,225	1,755
72	41/2	8	1,780	1,270	_	_
5/8	3%	51/2	1,710	1,215	_	_
78	5%	10	3,045	2,320	_	_
3/4	41/8	6¾	1,765	1,305	_	_

- 1. Allowable tension loads are calculated based on the strength design provision of ACI 318-11 Appendix D using a conversion factor of α = 1.4. The conversion factor α is based on the load combination 1.2D + 1.6L assuming 50% dead load and 50% live load: 1.2(0.5) + 1.6(0.5) = 1.4.
- 2. Tabulated values are for a single anchor with no influence of another anchor.
- 3. Interpolation between embedment depths is not permitted.
- 4. Installation must comply with Figure 2 on page 152.

Carbon Steel Strong-Bolt® 2 Allowable Tension Loads in Soffit of Normal-Weight or Sand-Lightweight Concrete-Filled Profile Steel Deck Assemblies ($f'_c = 3,000~psi$) — Wind Load

Anchor	Nominal Embed.	Minimum End		Allowable Ten	sion Load (lb.)	
Dia.	Depth	Distance c _{min}	Lower	Flute	Upper	Flute
(in.)	(in.)	(in.)	Uncracked	Cracked	Uncracked	Cracked
3/8	2	31/4	685	405	890	520
9/8	3%	6	1,230	1,020	_	_
1/2	23/4	41/2	1,005	795	1,870	1,475
1/2	41/2	8	1,495	1,065	_	_
5/	3%	5½	1,435	1,020	_	_
5/8	5%	10	2,560	1,945	_	_
3/4	41/8	6¾	1,480	1,100	_	_

- 1. Allowable tension loads are calculated based on the strength design provision of ACI 318-11 Appendix D using a conversion factor of α = 1.67. The conversion factor α is based on the load combination assuming 100% wind load.
- 2. Tabulated values are for a single anchor with no influence of another anchor.
- 3. Interpolation between embedment depths is not permitted.
- 4. Installation must comply with Figure 2 on page 152.

Carbon Steel Strong-Bolt® 2 Allowable Tension Loads in Soffit of Normal-Weight or Sand-Lightweight Concrete-Filled Profile Steel Deck Assemblies (f'_c = 3.000 psi) — Seismic Load

) (1 _C = 0,0	100 100.9) Load	llowable Ton	sion Load (lb.	١		
Anchor	Nominal Embed.	Minimum End Distance		Lowe	r Flute	illowable leli	ision Loau (ib.		r Flute	
Dia. (in.)	Depth	C _{min}	SDC	A-B ⁴	SDC	C-F ^{5,6}	SDC	A-B ⁴	SDC	C-F ^{5,6}
(,	(in.)	(in.)	Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked
3/8	2	31/4	800	475	600	355	1,035	610	775	460
9/8	3%	6	1,435	1,190	1,075	895	_	_	_	_
1/	23/4	41/2	1,175	930	880	695	2,180	1,720	1,640	1,290
1/2	41/2	8	1,745	1,245	1,310	930	_	_	_	_
5/8	3%	51/2	1,675	1,190	1,255	895	_	_	_	_
7/8	5%	10	2,985	2,270	2,240	1,705	_	_	_	_
3/4	41/8	6¾	1,730	1,280	1,300	960	_	_	_	_

- 1. Allowable tension loads are calculated based on the strength design provision of ACI 318-11 Appendix D using a conversion factor of $\alpha = \%.7 = 1.43$. The conversion factor α is based on the load combination assuming 100% seismic load.
- 2. Tabulated values are for a single anchor with no influence of another anchor.
- 3. Interpolation between embedment depths is not permitted.
- 4. The allowable tension load listed for SDC (Seismic Design Category) A-B may also be used in SDC C-F when the tension component of the strength-level seismic design load on the anchor does not exceed 20% of the total factored tension load on the anchor associated with the same load combination.
- 5. When designing anchorages in SDC C-F, the designer shall consider the ductility requirements of ACI 318-11 Section D.3.3.
- 6. Tension design strengths in SDC C-F have been adjusted by 0.75 factor in accordance with ACI 318-11 Section D.3.3.4.4.
- 7. Installation must comply with Figure 2 on page 152.

C-A-2016 @ 2015 SIMPSON STRONG-TIE COMPANY INC.

^{*} See page 12 for an explanation of the load table icons.

Strong-Tie

Strong-Bolt® 2 Design Information — Concrete

Stainless Steel Strong-Bolt® 2 Tension Design Strengths in Soffit of Normal-Weight or Sand-Lightweight Concrete-Filled Profile Steel Deck Assemblies ($f'_c = 3,000 \text{ psi}$)

IDC	1	1	
IDU		200	ľ

Nominal					noion boolg	n Strength (lb	•)		
Embed.	Minimum End		Lowe	r Flute			Uppe	Flute	
Dehm		SDC A	4-B⁵	SDC (C-F ^{6,7}	SDC	A-B⁵	SDC (C-F ^{6,7}
(In.)	` '	Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked
2	31/4	1,025	800	770	600	1,295	1,010	970	755
3%	6	2,570	1,695	1,735	1,145	_	_	_	_
2¾	41/2	1,610	1,295	1,205	970	1,665	1,335	1,250	1,000
41/2	8	1,730	1,660	1,295	1,245	_	_	_	_
3%	51/2	1,605	1,135	1,205	855	_	_	_	_
5%	10	3,250	2,615	2,440	1,960	_	_	_	_
41/8	6¾	2,780	1,970	2,085	1,475	_	_	_	_
	Depth (in.) 2 3% 2% 4½ 3% 5%	Depth (in.) 2 31/4 33/6 6 23/4 41/2 41/2 8 33/6 51/2 55/6 10	Depth (in.) Distance cmin (in.) SDC / Uncracked 2 31/4 1,025 33/6 6 2,570 23/4 4½ 1,610 4½ 8 1,730 3% 5½ 1,605 5% 10 3,250 4½ 63/4 2,780	Depth (in.) Distance c _{min} (in.) SDC A-B ⁵ 2 31/4 1,025 800 33/6 6 2,570 1,695 23/4 41/2 1,610 1,295 41/2 8 1,730 1,660 33/6 51/2 1,605 1,135 5% 10 3,250 2,615 41/6 63/4 2,780 1,970	Depth (in.) Distance c _{min} (in.) SDC A-B ⁵ SDC Cacked 2 31/4 1,025 800 770 33/6 6 2,570 1,695 1,735 23/4 41/2 1,610 1,295 1,205 41/2 8 1,730 1,660 1,295 33/6 51/2 1,605 1,135 1,205 5% 10 3,250 2,615 2,440 41/2 63/4 2,780 1,970 2,085	Depth (in.) SDC A-B5 SDC C-F6.7 2 31/4 1,025 800 770 600 3% 6 2,570 1,695 1,735 1,145 2% 41/2 1,610 1,295 1,205 970 41/2 8 1,730 1,660 1,295 1,245 3% 51/2 1,605 1,135 1,205 855 5% 10 3,250 2,615 2,440 1,960 4% 63/4 2,780 1,970 2,085 1,475	Depth (in.) SDC A-B5 SDC C-F6.7 SDC 2 31/4 1,025 800 770 600 1,295 3% 6 2,570 1,695 1,735 1,145 — 2% 41/2 1,610 1,295 1,205 970 1,665 41/2 8 1,730 1,660 1,295 1,245 — 3% 51/2 1,605 1,135 1,205 855 — 5% 10 3,250 2,615 2,440 1,960 — 41/6 63/4 2,780 1,970 2,085 1,475 —	Distance cmin (in.) SDC A-B ⁵ SDC C-F ^{6,7} SDC A-B ⁵	Depth (in.) Distance Cmin (in.) SDC A-B5 SDC C-F6.7 SDC A-B5 SDC A

- 1. Tension design strengths are based on the strength design provisions of ACI 318-11 Appendix D.
- 2. Tabulated values are for a single anchor with no influence of another anchor.
- 3. Interpolation between embedment depths is not permitted.
- 4. Strength reduction factor, ϕ , is based on using a load combination from ACI 318-11 Section 9.2.
- 5. The tension design strength listed for SDC (Seismic Design Category) A-B may also be used in SDC C-F when the tension component of the strength-level seismic design load on the anchor does not exceed 20% of the total factored tension load on the anchor associated with the same load combination.
- 6. When designing anchorages in SDC C-F, the designer shall consider the ductility requirements of ACI 318-11 Section D.3.3.
- 7. Tension design strengths in SDC C-F have been adjusted by 0.75 factor in accordance with ACI 318-11 Section D.3.3.4.4.
- 8. Installation must comply with Figure 2 on page 152.

Stainless Steel Strong-Bolt® 2 Allowable Tension Loads in Soffit of Normal-Weight or Sand-Lightweight Concrete-Filled Profile Steel Deck Assemblies (f' $_{\rm C}$ = 3,000 psi) — Static Load

	Nominal	Minimum End		Allowable Ten	sion Load (lb.)	
Anchor Dia. (in.)	Embed. Depth		Lowe	r Flute	Upper	· Flute
(,	(in.)	(in.)	Uncracked	Cracked	Uncracked	Cracked
3/8	2	31/4	730	570	925	720
78	3%	6	1,835	1,210		_
1/2	23/4	41/2	1,150	925	1,190	955
7/2	41/2	8	1,235	1,185	_	_
5/8	3%	5½	1,145	810		_
78	5%	10	2,320	1,870	_	_
3/4	41/8	6¾	1,985	1,405	_	_

- 1. Allowable tension loads are calculated based on the strength design provision of ACI 318-11 Appendix D using a conversion factor of α = 1.4. The conversion factor α is based on the load combination 1.2D + 1.6L assuming 50% dead load and 50% live load: 1.2(0.5) + 1.6(0.5) = 1.4.
- 2. Tabulated values are for a single anchor with no influence of another anchor.
- 3. Interpolation between embedment depths is not permitted.
- 4. Installation must comply with Figure 2 on page 152.

Stainless Steel Strong-Bolt® 2 Allowable Tension Loads in Soffit of Normal-Weight or Sand-Lightweight Concrete-Filled Profile Steel Deck Assemblies ($f'_c = 3,000 \text{ psi}$) — Wind Load

	Nominal	Minimum End	Allowable Tension Load (lb.)							
Anchor Dia. (in.)	Embed. Depth	Distance c _{min}	Lower	Flute	Upper Flute					
(****)	(in.)	(in.)	Uncracked	Cracked	Uncracked	Cracked				
3/8	2	31/4	615	480	775	605				
9/8	3%	6	1,540	1,015	_	_				
1/	23/4	41/2	965	775	1,000	800				
1/2	41/2	8	1,040	995	_	_				
5/	3%	51/2	965	680	_	_				
5/8	5%	10	1,950	1,570	_	_				
3/4	41/8	6¾	1,670	1,180	_	_				

- 1. Allowable tension loads are calculated based on the strength design provision of ACI 318-11 Appendix D using a conversion factor of α = 1.67. The conversion factor α is based on the load combination assuming 100% wind load.
- 2. Tabulated values are for a single anchor with no influence of another anchor.
- 3. Interpolation between embedment depths is not permitted.
- 4. Installation must comply with Figure 2 on page 152.

Stainless Steel Strong-Bolt® 2 Allowable Tension Loads in Soffit of Normal-Weight or Sand-Lightweight Concrete-Filled Profile Steel Deck Assemblies (f'_c = 3,000 psi) — Seismic Load

			0,000	1/						
	Nominal	Minimum			А	llowable Ter	ision Load (lb.	.)		
Anchor	Embed.	End		Lowe	r Flute			Uppe	r Flute	
Dia. (in.)	Depth	Distance	SDC	A-B ⁴	SDC	C-F ^{5,6}	SDC	A-B ⁴	SDC	C-F ^{5,6}
(,	(in.)	c _{min} (in.)	Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked
3/	2	31/4	720	560	540	420	905	705	680	530
3/8	3%	6	1,800	1,185	1,215	800	_	_	_	_
1/	23/4	41/2	1,125	905	845	680	1,165	935	875	700
1/2	41/2	8	1,210	1,160	905	870	_	_	_	_
5/	3%	5½	1,125	795	845	600	_	_	_	_
5/8	5%	10	2,275	1,830	1,710	1,370	_		_	_
3/4	41/8	6¾	1,945	1,380	1,460	1,035	_	_	_	_

- 1. Allowable tension loads are calculated based on the strength design provision of ACI 318-11 Appendix D using a conversion factor of $\alpha = \frac{1}{2}$. The conversion factor α is based on the load combination assuming 100% seismic load.
- 2. Tabulated values are for a single anchor with no influence of another anchor.
- 3. Interpolation between embedment depths is not permitted.
- 4. The allowable tension load listed for SDC (Seismic Design Category) A-B may also be used in SDC C-F when the tension component of the strength-level seismic design load on the anchor does not exceed 20% of the total factored tension load on the anchor associated with the same load combination.
- 5. When designing anchorages in SDC C-F, the designer shall consider the ductility requirements of ACI 318-11 Section D.3.3.
- 6. Tension design strengths in SDC C-F have been adjusted by 0.75 factor in accordance with ACI 318-11 Section D.3.3.4.4.
- 7. Installation must comply with Figure 2 on page 152.

C-A-2016 @ 2015 SIMPSON STRONG-TIE COMPANY INC.

^{*} See page 12 for an explanation of the load table icons.

Strong-Bolt® 2 Design Information — Masonry

Carbon-Steel Strong-Bolt® 2 Tension and Shear Loads in 8" Lightweight, Medium-Weight and Normal-Weight Grout-Filled CMU

IBC	→	*

Size	Drill Bit Dia.	Min. Embed.	Install. Torque	Critical Edge	Critical End	Critical	Tensio	n Load	Shear	r Load
in. (mm)	(in.)	Depth in. (mm)	ftlb. (N-m)	Dist. in. (mm)	Dist. in. (mm)	Spacing in. (mm)	Ultimate lb. (kN)	Allowable lb. (kN)	Ultimate lb. (kN)	Allowable lb. (kN)
			Anchor	Installed in the	Face of the CN	/IU Wall (See Fi	gure 1)			
1/4 (6.4)	1/4	13/4 (45)	4 (5.4)	12 (305)	12 (305)	8 (203)	1,150 (5.1)	230 (1.0)	1,500 (6.7)	300 (1.3)
3/8 (9.5)	3/8	25/8 (67)	20 (27.1)	12 (305)	12 (305)	8 (203)	2,185 (9.7)	435 (1.9)	3,875 (17.2)	775 (3.4)
1/2 (12.7)	1/2	3½ (89)	35 (47.5)	12 (305)	12 (305)	8 (203)	2,645 (11.8)	530 (2.4)	5,055 (22.5)	1,010 (4.5)
5/8 (15.9)	5/8	4 3/8 (111)	55 (74.6)	20 (508)	20 (508)	8 (203)	4,460 (19.8)	890 (4.0)	8,815 (39.2)	1,765 (7.9)
3/4 (19.1)	3/4	5 ½ (133)	100 (135.6)	20 (508)	20 (508)	8 (203)	5,240 (23.3)	1,050 (4.7)	12,450 (55.4)	2,490 (11.1)

- The tabulated allowable loads are based on a safety factor of 5.0 for installation under the IBC and IRC.
- 2. Listed loads may be applied to installations on the face of the CMU wall at least $1\,\%$ inch away from headjoints.
- Values for 8-inch-wide concrete masonry units (CMU) with a minimum specified compressive strength of masonry, f¹_m, at 28 days is 1,500 psi.
- 4. Embedment depth is measured from the outside face of the concrete masonry unit.
- 5. Tension and shear loads may be combined using the parabolic interaction equation ($n = \frac{5}{3}$).
- 6. Refer to allowable load adjustment factors for edge distance and spacing on page 163.
- 7. Allowable loads may be increased 331/4% for short-term loading due to wind forces or seismic forces where permitted by code.

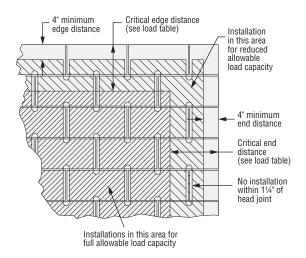


Figure 1

Carbon-Steel Strong-Bolt® 2 Tension and Shear Loads in 8" Lightweight, Medium-weight and Normal-Weight Grout-Filled CMU

Size	Drill Bit	Min. Embed.	Install.	Min. Edge.	Critical End	Critical	Tensio	n Load	Shear Load	Perp. To Edge		l Parallel To Ige
in. (mm)	Dia. in.	Depth. in. (mm)	Torque ftlb. (N-m)	Dist. in. (mm)	Dist. in. (mm)	Spacing in. (mm)	Ultimate lb. (kN)	Allowable lb. (kN)	Ultimate lb. (kN)	Allowable lb. (kN)	Ultimate lb. (kN)	Allowable lb. (kN)
			Α	nchor Install	ed in Cell Ope	ening or Web	(Top of Wall)	(See Figure	2)			
½ (12.7)	1/2	3½ (89)	35 (47.5)	13/4 (45)	12 (305)	8 (203)	2,080 (9.3)	415 (1.8)	1,165 (5.2)	235 (1.0)	3,360 (14.9)	670 (3.0)
5/8 (15.9)	5/8	4 % (111)	55 (74.6)	13/4 (45)	12 (305)	8 (203)	3,200 (14.2)	640 (2.8)	1,370 (6.1)	275 (1.2)	3,845 (17.1)	770 (3.4)

- The tabulated allowable loads are based on a safety factor of 5.0 for installation under the IBC and IRC.
- 2. Values for 8-inch-wide concrete masonry units (CMU) with a minimum specified compressive strength of masonry, f'_{m} , at 28 days is 1,500 psi.
- 3. Tension and shear loads may be combined using the parabolic interaction equation (n = $\frac{5}{2}$).
- 4. Refer to allowable load adjustment factors for edge distance and spacing on page 163.
- 5. Allowable loads may be increased 331/4% for short-term loading due to wind forces or seismic forces where permitted by code.

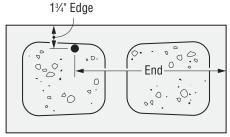


Figure 2

^{*} See page 12 for an explanation of the load table icons.

Strong-Bolt® 2 Design Information — Masonry

Carbon-Steel Strong-Bolt® 2 Allowable Load Adjustment Factors for Face-of-Wall Installation in 8" Grout-Filled CMU: Edge Distance and Spacing, Tension and Shear Loads

How to use these charts:

- 1. The following tables are for reduced edge distance and spacing.
- 2. Locate the anchor size to be used for either a tension and/or shear load application.
- 3. Locate the embedment (E) at which the anchor is to be installed.
- 4. Locate the edge distance (cact) or spacing (sact) at which the anchor is to be installed.
- 5. The load adjustment factor (f_c or f_s) is the intersection of the row and
- 6. Multiply the allowable load by the applicable load adjustment factor.
- 7. Reduction factors for multiple edges or spacings are multiplied

Edge or End Distance Tension (f_c)

	Dia.	1/4	3/8	1/2	5/8	3/4
	Ε	13/4	25/8	31/2	43/8	51/4
c _{act} (in.)	Ccr	12	12	12	20	20
(111.)	C _{min}	2	4	4	4	4
	f _{cmin}	1.00	1.00	1.00	1.00	0.97
2		1.00				
4		1.00	1.00	1.00	1.00	0.97
6		1.00	1.00	1.00	1.00	0.97
8		1.00	1.00	1.00	1.00	0.98
10		1.00	1.00	1.00	1.00	0.98
12		1.00	1.00	1.00	1.00	0.99
14					1.00	0.99
16					1.00	0.99
18					1.00	1.00
20					1.00	1.00

Edge or End Distance Shear (f_c)

_490 (o. <u>—</u> o.	Diotai		(.0)			
	Dia.	1/4	3/8	1/2	5/8	3/4	IB
	Ε	13/4	25/8	31/2	43/8	51/4	
c _{act} (in.)	Ccr	12	12	12	20	20	
(111.)	C _{min}	2	4	4	4	4	387
	f _{cmin}	0.88	0.71	0.60	0.36	0.28	
2		0.88					
4		0.90	0.71	0.60	0.36	0.28	
6		0.93	0.78	0.70	0.44	0.37	1/4
8		0.95	0.86	0.80	0.52	0.46	(fine
10		0.98	0.93	0.90	0.60	0.55	
12		1.00	1.00	1.00	0.68	0.64	
14					0.76	0.73	
16					0.84	0.82	
18					0.92	0.91	
20					1.00	1.00	

Spacing Tension (f_s)

	Dia.	1/4	3/8	1/2	5/8	3/4	IB
	Ε	13/4	25/8	31/2	43/8	51/4	
s _{act} (in.)	Scr	8	8	8	8	8	1
(III.)	Smin	4	4	4	4	4	207
	f _{smin}	1.00	1.00	0.93	0.86	0.80	<u></u>
4		1.00	1.00	0.93	0.86	0.80	
6		1.00	1.00	0.97	0.93	0.90	6
8		1.00	1.00	1.00	1.00	1.00	

Spacing Shear (f_s)

s _{act} (in.)	Dia.	1/4	3/8	1/2	5/8	3/4
	Ε	13/4	25/8	31/2	43/8	51/4
	Scr	8	8	8	8	8
	Smin	4	4	4	4	4
	f _{smin}	1.00	1.00	1.00	1.00	1.00
4		1.00	1.00	1.00	1.00	1.00
6		1.00	1.00	1.00	1.00	1.00
8		1.00	1.00	1.00	1.00	1.00

Load Adjustment Factors for Carbon-Steel Strong-Bolt® 2 Wedge Anchors in Top-of-Wall Installation in 8" Grout-Filled CMU: Edge Distance and Spacing, Tension and Shear Loads

End Distance

C-A-2016 @ 2015 SIMPSON STRONG-TIE COMPANY INC.

ensio	n (f _c)			
	Dia.	1/2	5/8	IBC
_	Ε	31/2	4%	ibu
s _{act} (in.)	c _{cr}	12	12	
(111.)	C _{min}	4	4	27 22
	f _{cmin}	1.00	1.00	(22/2
4		1.00	1.00	
6		1.00	1.00	
8		1.00	1.00	← ¥
10		1.00	1.00	
12		1.00	1.00	

End Distance Shear

Perper	ndicula	ır to Ec	ige (t _c)	
	Dia.	1/2	5/8	IBC *
	Ε	31/2	43/8	IDO
c _{act} (in.)	c _{cr}	12	12	\rightarrow
(111.)	Cmin	4	4	87 82
	f _{cmin}	0.90	0.83	(22)2
4		0.90	0.83	
6		0.93	0.87	
8		0.95	0.92	/
10		0.98	0.96	(1
12		1.00	1.00	

End Distance

Shear	Paralle	el to Ec	ige (t _c)	
c _{act}	Dia.	1/2	5/8	IRC
	Ε	31/2	4%	IDO
	c _{cr}	12	12	\rightarrow
(111.)	C _{min}	4	4	20 ES
	f _{cmin}	0.53	0.50	(22/2)
4		0.53	0.50	
6		0.65	0.63	
8		0.77	0.75	
10		0.88	0.88	
12		1.00	1.00	

Spacir	ng Tens	sion († _{s.})	
	Dia.	1/2	5/8	IRC *
	Ε	31/2	43/8	IDO
s _{act} (in.)	Scr	8	8	1
(111.)	Smin	4	4	20 20
	f _{cmin}	0.93	0.86	(== =
4		0.93	0.86	H
6		0.97	0.93	<u> </u>
8		1.00	1.00	/ ←→ \

Spacing Shear Perpendicular

or Para	allel to	Edge	(† _S)	
	Dia.	1/2	5/8	IRC *
	Ε	31/2	43/8	
s _{act} (in.)	Scr	8	8	-
(111.)	Smin	4	4	20 ES
	f _{cmin}	1.00	1.00	(==/=
4		1.00	1.00	
6		1.00	1.00	n_n
8		1.00	1.00	/ 4 → \

For footnotes, please see page 200.